ACM-C++STL新增容器

本文最后更新于:December 3, 2021 pm

介绍记录STL提供新增加的容器,记录其用法和一些相关的函数。

目录

一.STL新增容器

注意: 在一些编译器中是不能正常使用新增的容器的。这点需要注意。

1.array容器

array 容器是 C++ 11 标准中新增的序列容器,简单地理解,它就是在 C++ 普通数组的基础上,添加了一些成员函数和全局函数。在使用上,它比普通数组更安全,且效率并没有因此变差。和其它容器不同,array 容器的大小是固定的,无法动态的扩展或收缩,这也就意味着,在使用该容器的过程无法借由增加或移除元素而改变其大小,它只允许访问或者替换存储的元素。
array 容器以类模板的形式定义在 头文件,并位于命名空间 std 中。如下:

1
2
3
4
namespace std{
template <typename T, size_t N>
class array;
}

注意:在 array<T,N> 类模板中,T 用于指明容器中的存储的具体数据类型,N 用于指明容器的大小,需要注意的是,这里的 N 必须是常量,不能用变量表示。
array 容器有多种初始化方式,如下代码展示了如何创建具有 10 个 double 类型元素的 array 容器:

1
std::array<double, 10> values;

如果程序中已经默认指定了 std 命令空间,这里可以省略 std::。
这样就创建好了一个名为 values 的 array 容器,其包含 10 个浮点型元素。但是,由于未显式指定这 10 个元素的值,因此使用这种方式创建的容器中,各个元素的值是不确定的(array 容器不会做默认初始化操作)。

通过如下创建 array 容器的方式,可以将所有的元素初始化为 0 或者和默认元素类型等效的值:

1
std::array<double, 10> values {}; //容器中所有的元素都会被初始化为 0.0。

在创建 array 容器的实例时,也可以像创建常规数组那样对元素进行初始化:

1
std::array<double, 10> values {0.5,1.0,1.5,2.0};

这里只初始化了前 4 个元素,剩余的元素都会被初始化为 0.0。

除此之外,array 容器还提供有很多功能实用的成员函数,

成员函数 功能
begin() 返回指向容器中第一个元素的随机访问迭代器。
end() 返回指向容器最后一个元素之后一个位置的随机访问迭代器,通常和 begin() 结合使用。
rbegin() 返回指向最后一个元素的随机访问迭代器。
rend() 返回指向第一个元素之前一个位置的随机访问迭代器。
cbegin() 和 begin() 功能相同,只不过在其基础上增加了 const 属性,不能用于修改元素。
cend() 和 end() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crbegin() 和 rbegin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
crend() 和 rend() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
size() 返回容器中当前元素的数量,其值始终等于初始化 array 类的第二个模板参数 N。
max_size() 返回容器可容纳元素的最大数量,其值始终等于初始化 array 类的第二个模板参数 N。
empty() 判断容器是否为空,和通过 size()==0 的判断条件功能相同,但其效率可能更快。
at(n) 返回容器中 n 位置处元素的引用,该函数自动检查 n 是否在有效的范围内,如果不是则抛出 out_of_range 异常。
front() 返回容器中第一个元素的直接引用,该函数不适用于空的 array 容器。
back() 返回容器中最后一个元素的直接应用,该函数同样不适用于空的 array 容器。
data() 返回一个指向容器首个元素的指针。利用该指针,可实现复制容器中所有元素等类似功能。
fill(val) 将 val 这个值赋值给容器中的每个元素。
array1.swap(array2) 交换 array1 和 array2 容器中的所有元素,但前提是它们具有相同的长度和类型。

除此之外,C++ 11 标准库还新增加了 begin() 和 end() 这 2 个函数,和 array 容器包含的 begin() 和 end() 成员函数不同的是,标准库提供的这 2 个函数的操作对象,既可以是容器,还可以是普通数组。当操作对象是容器时,它和容器包含的 begin() 和 end() 成员函数的功能完全相同;如果操作对象是普通数组,则 begin() 函数返回的是指向数组第一个元素的指针,同样 end() 返回指向数组中最后一个元素之后一个位置的指针(注意不是最后一个元素)。

头文件中还重载了 get() 全局函数,该重载函数的功能是访问容器中指定的元素,并返回该元素的引用。正是由于 array 容器中包含了 at() 这样的成员函数,使得操作元素时比普通数组更安全。

部分成员函数演示运用代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <iostream>
#include <array>
using namespace std;
int main()
{
std::array<int, 4> values{};
//初始化 values 容器为 {0,1,2,3}
for (int i = 0; i < values.size(); i++) {
values.at(i) = i;
}
//使用 get() 重载函数输出指定位置元素
cout << get<3>(values) << endl;
//如果容器不为空,则输出容器中所有的元素
if (!values.empty()) {
for (auto val = values.begin(); val < values.end(); val++) {//auto 关键字,可以使编译器自动判定变量的类型。
cout << *val << " ";
}
}
}
//输出结果
3
0 1 2 3

当 array 容器创建完成之后,最常做的操作就是获取其中的元素,甚至有时还会通过循环结构获取多个元素。

访问元素

1.访问array容器中单个元素

可以通过容器名[]的方式直接访问和使用容器中的元素,这和 C++ 标准数组访问元素的方式相同,比如:

1
values[4] = values[3] + 2.0*values[1];

第 5 个元素的值被赋值为右边表达式的值。需要注意的是,使用如上这样方式,由于没有做任何边界检查,所以即便使用越界的索引值去访问或存储元素,也不会被检测到。

为了能够有效地避免越界访问的情况,可以使用 array 容器提供的 at() 成员函数,例如 :

1
values.at (4) = values.at(3) + 2.0*values.at(1);

和前一行语句实现的功能相同,其次当传给 at() 的索引是一个越界值时,程序会抛出 std::out_of_range 异常。因此当需要访问容器中某个指定元素时,建议大家使用 at(),除非确定索引没有越界。

为什么 array 容器在重载 [] 运算符时,没有实现边界检查的功能呢?
因为性能。如果每次访问元素,都去检查索引值,无疑会产生很多开销。当不存在越界访问的可能时,就能避免这种开销。

除此之外,array 容器还提供了 get 模板函数,它是一个辅助函数,能够获取到容器的第 n 个元素。需要注意的是,该模板函数中,参数的实参必须是一个在编译时可以确定的常量表达式,所以它不能是一个循环变量。也就是说,它只能访问模板参数指定的元素,编译器在编译时会对它进行检查。

使用 get 模板函数代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
#include <iostream>
#include <array>
#include <string>
using namespace std;
int main()
{
array<string, 5> words{ "one","two","three","four","five" };
cout << get<3>(words) << endl; // Output words[3]
//cout << get<6>(words) << std::endl; //越界,会发生编译错误
return 0;
}
//运行结果
four

另外,array 容器提供了 data() 成员函数,通过调用该函数可以得到指向容器首个元素的指针。通过该指针,我们可以获得容器中的各个元素,例如:

1
2
3
4
5
6
7
8
9
10
11
#include <iostream>
#include <array>
using namespace std;
int main()
{
array<int, 5> words{1,2,3,4,5};
cout << *( words.data()+1);
return 0;
}
//运行结果
2

2.访问array容器中多个元素

array 容器提供的 size() 函数能够返回容器中元素的个数(函数返回值为 size_t 类型),例子:计算求和:

1
2
3
4
5
double total = 0;
for(size_t i = 0 ; i < values.size() ; ++i)
{
total += values[i];
}

size() 函数的存在,为 array 容器提供了标准数组所没有的优势,即能够知道它包含多少元素。

并且,接受数组容器作为参数的函数,只需要通过调用容器的成员函数 size(),就能得到元素的个数。除此之外,通过调用 array 容器的 empty() 成员函数,即可知道容器中有没有元素(如果容器中没有元素,此函数返回 true),如下所示:

1
2
3
4
if(values.empty())
std::cout << "The container has no elements.\n";
else
std::cout << "The container has "<< values.size()<<"elements.\n";

然而,很少会创建空的 array 容器,因为当生成一个 array 容器时,它的元素个数就固定了,而且无法改变,所以生成空 array 容器的唯一方法是将模板的第二个参数指定为 0,但这种情况基本不可能发生。

array 容器之所以提供 empty() 成员函数的原因,对于其他元素可变或者元素可删除的容器(例如 vector、deque 等)来说,它们使用 empty() 时的机制是一样的,因此为它们提供了一个一致性的操作。

除了借助 size() 外,对于任何可以使用迭代器的容器,都可以使用基于范围的循环,因此能够更加简便地计算容器中所有元素的和,比如:

1
2
3
double total = 0;
for(auto&& value : values)
total += value;

综合案例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#include <iostream>
#include <iomanip>
#include <array>
using namespace std;
int main()
{
array<int, 5> values1;
array<int, 5> values2;
//初始化 values1 为 {0,1,2,3,4}
for (size_t i = 0; i < values1.size(); ++i)
{
values1.at(i) = i;
}
cout << "values1[0] is : " << values1[0] << endl;
cout << "values1[1] is : " << values1.at(1) << endl;
cout << "values1[2] is : " << get<2>(values1) << endl;
//初始化 values2 为{10,11,12,13,14}
int initvalue = 10;
for (auto& value : values2)
{
value = initvalue;
initvalue++;
}
cout << "Values1 is : ";
for (auto i = values1.begin(); i < values1.end(); i++) {
cout << *i << " ";
}
cout << endl << "Values2 is : ";
for (auto i = values2.begin(); i < values2.end(); i++) {
cout << *i << " ";
}
return 0;
}
//运行结果
values1[0] is : 0
values1[1] is : 1
values1[2] is : 2
Values1 is : 0 1 2 3 4
Values2 is : 10 11 12 13 14

2.forward_list容器

forward_list 是 C++ 11 新添加的一类容器,其底层实现和 list 容器一样,采用的也是链表结构,只不过 forward_list 使用的是单链表,而 list 使用的是双向链表。
使用链表存储数据最大的特点在于,其并不会将数据进行集中存储(向数组那样),换句话说,链表中数据的存储位置是分散的、随机的,整个链表中数据的线性关系通过指针来维持。

forward_list 容器具有和 list 容器相同的特性,即擅长在序列的任何位置进行插入元素或删除元素的操作,但对于访问存储的元素,没有其它容器(如 array、vector)的效率高。
由于单链表没有双向链表那样灵活,因此相比 list 容器,forward_list 容器的功能受到了很多限制。比如,由于单链表只能从前向后遍历,而不支持反向遍历,因此 forward_list 容器只提供前向迭代器,而不是双向迭代器。这意味着,forward_list 容器不具有 rbegin()、rend() 之类的成员函数。

既然 forward_list 容器具有和 list 容器相同的特性,list 容器还可以提供更多的功能函数,forward_list 容器有什么存在的必要呢?
虽然forward_list 容器底层使用单链表,也不是一无是处。比如,存储相同个数的同类型元素,单链表耗用的内存空间更少,空间利用率更高,并且对于实现某些操作单链表的执行效率也更高。
效率高是选用 forward_list 而弃用 list 容器最主要的原因,换句话说,只要是 list 容器和 forward_list 容器都能实现的操作,应优先选择 forward_list 容器。

1.forward_list容器的创建

由于 forward_list 容器以模板类 forward_list(T 为存储元素的类型)的形式被包含在头文件中,并定义在 std 命名空间中。std 命名空间也可以在使用 forward_list 容器时额外注明,两种方式都可以。

1.创建一个没有任何元素的空 forward_list 容器:

1
std::forward_list<int> values;//由于 forward_list 容器在创建后也可以添加元素,因此这种创建方式很常见。

2.创建一个包含 n 个元素的 forward_list 容器:

1
std::forward_list<int> values(10);//通过此方式创建 values 容器,其中包含 10 个元素,每个元素的值都为相应类型的默认值(int类型的默认值为 0)。

3.创建一个包含 n 个元素的 forward_list 容器,并为每个元素指定初始值。

1
std::forward_list<int> values(10, 5);//创建了一个包含 10 个元素并且值都为 5 个 values 容器。

4.在已有 forward_list 容器的情况下,通过拷贝该容器可以创建新的 forward_list 容器。

1
2
3
std::forward_list<int> value1(10);
std::forward_list<int> value2(value1);
//采用此方式,必须保证新旧容器存储的元素类型一致。

5.通过拷贝其他类型容器(或者普通数组)中指定区域内的元素,可以创建新的 forward_list 容器。

1
2
3
4
5
6
//拷贝普通数组,创建forward_list容器
int a[] = { 1,2,3,4,5 };
std::forward_list<int> values(a, a+5);
//拷贝其它类型的容器,创建forward_list容器
std::array<int, 5>arr{ 11,12,13,14,15 };
std::forward_list<int>values(arr.begin()+2, arr.end());//拷贝arr容器中的{13,14,15}
2.forward_list容器支持的成员函数
成员函数 功能
before_begin() 返回一个前向迭代器,其指向容器中第一个元素之前的位置。
begin() 返回一个前向迭代器,其指向容器中第一个元素的位置。
end() 返回一个前向迭代器,其指向容器中最后一个元素之后的位置。
cbefore_begin() 和 before_begin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
cbegin() 和 begin() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
cend() 和 end() 功能相同,只不过在其基础上,增加了 const 属性,不能用于修改元素。
empty() 判断容器中是否有元素,若无元素,则返回 true;反之,返回 false。
max_size() 返回容器所能包含元素个数的最大值。这通常是一个很大的值,一般是 232-1,所以我们很少会用到这个函数。
front() 返回第一个元素的引用。
assign() 用新元素替换容器中原有内容。
push_front() 在容器头部插入一个元素。
emplace_front() 在容器头部生成一个元素。该函数和 push_front() 的功能相同,但效率更高。
pop_front() 删除容器头部的一个元素。
emplace_after() 在指定位置之后插入一个新元素,并返回一个指向新元素的迭代器。和 insert_after() 的功能相同,但效率更高。
insert_after() 在指定位置之后插入一个新元素,并返回一个指向新元素的迭代器。
erase_after() 删除容器中某个指定位置或区域内的所有元素。
swap() 交换两个容器中的元素,必须保证这两个容器中存储的元素类型是相同的。
resize() 调整容器的大小。
clear() 删除容器存储的所有元素。
splice_after() 将某个 forward_list 容器中指定位置或区域内的元素插入到另一个容器的指定位置之后。
remove(val) 删除容器中所有等于 val 的元素。
remove_if() 删除容器中满足条件的元素。
unique() 删除容器中相邻的重复元素,只保留一个。
merge() 合并两个事先已排好序的 forward_list 容器,并且合并之后的 forward_list 容器依然是有序的。
sort() 通过更改容器中元素的位置,将它们进行排序。
reverse() 反转容器中元素的顺序。

除此之外,C++ 11 标准库还新增加了 begin() 和 end() 这 2 个函数,和 forward_list 容器包含的 begin() 和 end() 成员函数不同,标准库提供的这 2 个函数的操作对象,既可以是容器,还可以是普通数组。当操作对象是容器时,它和容器包含的 begin() 和 end() 成员函数的功能完全相同;如果操作对象是普通数组,则 begin() 函数返回的是指向数组第一个元素的指针,同样 end() 返回指向数组中最后一个元素之后一个位置的指针(注意不是最后一个元素)。

forward_list 容器还有一个std::swap(x , y)非成员函数(其中 x 和 y 是存储相同类型元素的 forward_list 容器),它和 swap() 成员函数的功能完全相同,仅使用语法上有差异。

部分成员函数案例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#include <iostream>
#include <forward_list>
using namespace std;
int main()
{
std::forward_list<int> values{1,2,3};
values.emplace_front(4);//{4,1,2,3}
values.emplace_after(values.before_begin(), 5); //{5,4,1,2,3}
values.reverse();//{3,2,1,4,5}
for (auto it = values.begin(); it != values.end(); ++it) {
cout << *it << " ";
}
return 0;
}
//结果输出
3 2 1 4 5

因为forward_list 容器中是不提供 size() 函数的,但如果想要获取 forward_list 容器中存储元素的个数,可以使用头文件 中的 distance() 函数。例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
#include <iostream>
#include <forward_list>
#include <iterator>
using namespace std;
int main()
{
std::forward_list<int> my_words{1,2,3,4};
int count = std::distance(std::begin(my_words), std::end(my_words));
cout << count;
return 0;
}
//输出结果
4

并且,forward_list 容器迭代器的移动除了使用 ++ 运算符单步移动,还能使用 advance() 函数,比如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#include <iostream>
#include <forward_list>
using namespace std;
int main()
{
std::forward_list<int> values{1,2,3,4};
auto it = values.begin();
advance(it, 2);
while (it!=values.end())
{
cout << *it << " ";
++it;
}
return 0;
}
//输出结果
3 4

二.无序关联式容器

除了序列式容器和关联式容器之外,C++ 11 标准库又引入了一类容器,即无序关联式容器。
无序关联式容器,又称哈希容器。和关联式容器一样,此类容器存储的也是键值对元素;不同之处在于,关联式容器默认情况下会对存储的元素做升序排序,而无序关联式容器不会。和其它类容器相比,无序关联式容器擅长通过指定键查找对应的值,而遍历容器中存储元素的效率不如关联式容器。
基于底层实现采用了不同的数据结构,因此和关联式容器相比,无序容器具有以下 2 个特点:

1.无序容器内部存储的键值对是无序的,各键值对的存储位置取决于该键值对中的键,
2.和关联式容器相比,无序容器擅长通过指定键查找对应的值(平均时间复杂度为 O(1));但对于使用迭代器遍历容器中存储的元素,无序容器的执行效率则不如关联式容器。

和关联式容器一样,无序容器只是一类容器的统称,其包含有 4 个具体容器,分别为 unordered_map、unordered_multimap、unordered_set 以及 unordered_multiset。

无序容器 功能
unordered_map 存储键值对 <key, value> 类型的元素,其中各个键值对键的值不允许重复,且该容器中存储的键值对是无序的。
unordered_multimap 和 unordered_map 唯一的区别在于,该容器允许存储多个键相同的键值对。
unordered_set 不再以键值对的形式存储数据,而是直接存储数据元素本身(当然也可以理解为,该容器存储的全部都是键 key 和值 value 相等的键值对,正因为它们相等,因此只存储 value 即可)。另外,该容器存储的元素不能重复,且容器内部存储的元素也是无序的。
unordered_multiset 和 unordered_set 唯一的区别在于,该容器允许存储值相同的元素。

以上 4 种无序容器的名称,仅是在前面所学的 4 种关联式容器名称的基础上,添加了 “unordered_”。如果已经学完了 map、multimap、set 和 multiset 容器不难发现,以 map 和 unordered_map 为例,其实它们仅有一个区别,即 map 容器内存会对存储的键值对进行排序,而 unordered_map 不会。

C++ 11 标准的 STL 中,在已提供有 4 种关联式容器的基础上,又新增了各自的“unordered”版本(无序版本、哈希版本),提高了查找指定元素的效率。

总的来说,实际场景中如果涉及大量遍历容器的操作,建议首选关联式容器;反之,如果更多的操作是通过键获取对应的值,则应首选无序容器。

以 unordered_map 容器为例,用法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建并初始化一个 unordered_map 容器,其存储的 <string,string> 类型的键值对
std::unordered_map<std::string, std::string> my_uMap{
{"C语言教程","https://lichengloong.com/"},
{"Python教程","https://lichengloong.com/"},
{"Java教程","https://lichengloong.com/"} };
//查找指定键对应的值,效率比关联式容器高
string str = my_uMap.at("C语言教程");
cout << "str = " << str << endl;
//使用迭代器遍历哈希容器,效率不如关联式容器
for (auto iter = my_uMap.begin(); iter != my_uMap.end(); ++iter)
{
//pair 类型键值对分为 2 部分
cout << iter->first << " " << iter->second << endl;
}
return 0;
}
//输出结果
str = https://lichengloong.com/
C语言教程 https://lichengloong.com/
Python教程 https://lichengloong.com/
Java教程 https://lichengloong.com/

1.unordered_map容器

unordered_map 容器在头文件中,并位于 std 命名空间中。
unordered_map 容器,直译过来就是”无序 map 容器”的意思。所谓“无序”,指的是 unordered_map 容器不会像 map 容器那样对存储的数据进行排序。换句话说,unordered_map 容器和 map 容器仅有一点不同,即 map 容器中存储的数据是有序的,而 unordered_map 容器中是无序的。
对于已经学过 map 容器的,可以将 unordered_map 容器等价为无序的 map 容器。

具体来讲,unordered_map 容器和 map 容器一样,以键值对(pair类型)的形式存储数据,存储的各个键值对的键互不相同且不允许被修改。但由于 unordered_map 容器底层采用的是哈希表存储结构,该结构本身不具有对数据的排序功能,所以此容器内部不会自行对存储的键值对进行排序。

unordered_map 容器模板的定义如下所示:

1
2
3
4
5
6
template < class Key,                        //键值对中键的类型
class T, //键值对中值的类型
class Hash = hash<Key>, //容器内部存储键值对所用的哈希函数
class Pred = equal_to<Key>, //判断各个键值对键相同的规则
class Alloc = allocator< pair<const Key,T> > // 指定分配器对象的类型
> class unordered_map;

以上 5 个参数中,必须显式给前 2 个参数传值,并且除特殊情况外,最多只需要使用前 4 个参数,各自的含义和功能如表 所示。

参数 含义
<key,T> 前 2 个参数分别用于确定键值对中键和值的类型,也就是存储键值对的类型。
Hash = hash 用于指明容器在存储各个键值对时要使用的哈希函数,默认使用 STL 标准库提供的 hash 哈希函数。注意,默认哈希函数只适用于基本数据类型(包括 string 类型),而不适用于自定义的结构体或者类。
Pred = equal_to 要知道,unordered_map 容器中存储的各个键值对的键是不能相等的,而判断是否相等的规则,就由此参数指定。默认情况下,使用 STL 标准库中提供的 equal_to 规则,该规则仅支持可直接用 == 运算符做比较的数据类型。

总的来说,当无序容器中存储键值对的键为自定义类型时,默认的哈希函数 hash 以及比较函数 equal_to 将不再适用,只能自己设计适用该类型的哈希函数和比较函数,并显式传递给 Hash 参数和 Pred 参数。

1.1创建方法

常见的创建 unordered_map 容器的方法有以下几种。

  1. 通过调用 unordered_map 模板类的默认构造函数,可以创建空的 unordered_map 容器。比如:

    1
    std::unordered_map<std::string, std::string> umap;

    这样就创建好了一个可存储 <string,string> 类型键值对的 unordered_map 容器。

  2. 在创建 unordered_map 容器的同时,可以完成初始化操作。比如:

    1
    2
    3
    4
    std::unordered_map<std::string, std::string> umap{
    {"Python教程","https://lichengloong.com/"},
    {"Java教程","https://lichengloong.com/"},
    {"Linux教程","https://lichengloong.com/"} };

此方法创建的 umap 容器中,就包含有 3 个键值对元素。

  1. 另外,还可以调用 unordered_map 模板中提供的复制(拷贝)构造函数,将现有 unordered_map 容器中存储的键值对,复制给新建 unordered_map 容器。
    在第二种方式创建好 umap 容器的基础上,再创建并初始化一个 umap2 容器:
    1
    std::unordered_map<std::string, std::string> umap2(umap);
    由此,umap2 容器中就包含有 umap 容器中所有的键值对。

除此之外,C++ 11 标准中还向 unordered_map 模板类增加了移动构造函数,即以右值引用的方式将临时 unordered_map 容器中存储的所有键值对,全部复制给新建容器。例如:

1
2
3
4
5
6
7
8
9
10
//返回临时 unordered_map 容器的函数
std::unordered_map <std::string, std::string > retUmap(){
std::unordered_map<std::string, std::string>tempUmap{
{"Python教程","https://lichengloong.com/"},
{"Java教程","https://lichengloong.com/"},
{"Linux教程","https://lichengloong.com/"} };
return tempUmap;
}
//调用移动构造函数,创建 umap2 容器
std::unordered_map<std::string, std::string> umap2(retUmap());

无论是调用复制构造函数还是拷贝构造函数,必须保证 2 个容器的类型完全相同。

  1. 如果不想全部拷贝,可以使用 unordered_map 类模板提供的迭代器,在现有 unordered_map 容器中选择部分区域内的键值对,为新建 unordered_map 容器初始化。例如:
    1
    2
    //传入 2 个迭代器,
    std::unordered_map<std::string, std::string> umap2(++umap.begin(),umap.end());
    通过此方式创建的 umap2 容器,其内部就包含 umap 容器中除第 1 个键值对外的所有其它键值对。
1.2 unordered_map容器的成员方法

unordered_map 既可以看做是关联式容器,更属于自成一脉的无序容器。因此在该容器模板类中,既包含一些在学习关联式容器时常见的成员方法,还有一些属于无序容器特有的成员方法。

成员方法 功能
begin() 返回指向容器中第一个键值对的正向迭代器。
end() 返回指向容器中最后一个键值对之后位置的正向迭代器。
cbegin() 和 begin() 功能相同,只不过在其基础上增加了 const 属性,即该方法返回的迭代器不能用于修改容器内存储的键值对。
cend() 和 end() 功能相同,只不过在其基础上,增加了 const 属性,即该方法返回的迭代器不能用于修改容器内存储的键值对。
empty() 若容器为空,则返回 true;否则 false。
size() 返回当前容器中存有键值对的个数。
max_size() 返回容器所能容纳键值对的最大个数,不同的操作系统,其返回值亦不相同。
operator[key] 该模板类中重载了 [] 运算符,其功能是可以向访问数组中元素那样,只要给定某个键值对的键 key,就可以获取该键对应的值。注意,如果当前容器中没有以 key 为键的键值对,则其会使用该键向当前容器中插入一个新键值对。
at(key) 返回容器中存储的键 key 对应的值,如果 key 不存在,则会抛出 out_of_range 异常。
find(key) 查找以 key 为键的键值对,如果找到,则返回一个指向该键值对的正向迭代器;反之,则返回一个指向容器中最后一个键值对之后位置的迭代器(如果 end() 方法返回的迭代器)。
count(key) 在容器中查找以 key 键的键值对的个数。
equal_range(key) 返回一个 pair 对象,其包含 2 个迭代器,用于表明当前容器中键为 key 的键值对所在的范围。
emplace() 向容器中添加新键值对,效率比 insert() 方法高。
emplace_hint() 向容器中添加新键值对,效率比 insert() 方法高。
insert() 向容器中添加新键值对。
erase() 删除指定键值对。
clear() 清空容器,即删除容器中存储的所有键值对。
swap() 交换 2 个 unordered_map 容器存储的键值对,前提是必须保证这 2 个容器的类型完全相等。
bucket_count() 返回当前容器底层存储键值对时,使用桶(一个线性链表代表一个桶)的数量。
max_bucket_count() 返回当前系统中,unordered_map 容器底层最多可以使用多少桶。
bucket_size(n) 返回第 n 个桶中存储键值对的数量。
bucket(key) 返回以 key 为键的键值对所在桶的编号。
load_factor() 返回 unordered_map 容器中当前的负载因子。负载因子,指的是的当前容器中存储键值对的数量(size())和使用桶数(bucket_count())的比值,即 load_factor() = size() / bucket_count()。
max_load_factor() 返回或者设置当前 unordered_map 容器的负载因子。
rehash(n) 将当前容器底层使用桶的数量设置为 n。
reserve() 将存储桶的数量(也就是 bucket_count() 方法的返回值)设置为至少容纳count个元(不超过最大负载因子)所需的数量,并重新整理容器。
hash_function() 返回当前容器使用的哈希函数对象。

注意的是,对于实现互换 2 个相同类型 unordered_map 容器的键值对,除了可以调用该容器模板类中提供的 swap() 成员方法外,STL 标准库还提供了同名的 swap() 非成员函数。

部分函数用法例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建空 umap 容器
unordered_map<string, string> umap;
//向 umap 容器添加新键值对
umap.emplace("Python教程", "https://lichengloong.com/");
umap.emplace("Java教程", "https://lichengloong.com/");
umap.emplace("Linux教程", "https://lichengloong.com/");
//输出 umap 存储键值对的数量
cout << "umap size = " << umap.size() << endl;
//使用迭代器输出 umap 容器存储的所有键值对
for (auto iter = umap.begin(); iter != umap.end(); ++iter) {
cout << iter->first << " " << iter->second << endl;
}
return 0;
}
//输出结果
umap size = 3
Python教程 https://lichengloong.com/
Linux教程 https://lichengloong.com/
Java教程 https://lichengloong.com/
1.3 unordered_map迭代器的用法

C++ STL 标准库中,unordered_map 容器迭代器的类型为前向迭代器(又称正向迭代器)。这意味着,假设 p 是一个前向迭代器,则其只能进行 *p、p++、++p 操作,且 2 个前向迭代器之间只能用 == 和 != 运算符做比较。

unordered_map迭代器相关成员方法:

成员方法 功能
begin() 返回指向容器中第一个键值对的正向迭代器。
end() 返回指向容器中最后一个键值对之后位置的正向迭代器。
cbegin() 和 begin() 功能相同,只不过在其基础上增加了 const 属性,即该方法返回的迭代器不能用于修改容器内存储的键值对。
cend() 和 end() 功能相同,只不过在其基础上,增加了 const 属性,即该方法返回的迭代器不能用于修改容器内存储的键值对。
find(key) 查找以 key 为键的键值对,如果找到,则返回一个指向该键值对的正向迭代器;反之,则返回一个指向容器中最后一个键值对之后位置的迭代器(如果 end() 方法返回的迭代器)。
equal_range(key) 返回一个 pair 对象,其包含 2 个迭代器,用于表明当前容器中键为 key 的键值对所在的范围。

equal_range(key) 很少用于 unordered_map 容器,因为该容器中存储的都是键不相等的键值对,即便调用该成员方法,得到的 2 个迭代器所表示的范围中,最多只包含 1 个键值对。事实上,该成员方法更适用于 unordered_multimap 容器。

分成员方法的用法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建 umap 容器
unordered_map<string, string> umap{
{"Python教程","https://lichengloong.com/"},
{"Java教程","https://lichengloong.com/"},
{"Linux教程","https://lichengloong.com/"} };
cout << "umap 存储的键值对包括:" << endl;
//遍历输出 umap 容器中所有的键值对
for (auto iter = umap.begin(); iter != umap.end(); ++iter) {
cout << "<" << iter->first << ", " << iter->second << ">" << endl;
}
//获取指向指定键值对的前向迭代器
unordered_map<string, string>::iterator iter = umap.find("Java教程");
cout <<"umap.find(\"Java教程\") = " << "<" << iter->first << ", " << iter->second << ">" << endl;
return 0;
}
//输出结果
umap 存储的键值对包括:
<Python教程, https://lichengloong.com/>
<Linux教程, https://lichengloong.com/>
<Java教程, https://lichengloong.com/>
umap.find("Java教程") = <Java教程, https://lichengloong.com/>

需要注意的是,在操作 unordered_map 容器过程(尤其是向容器中添加新键值对)中,一旦当前容器的负载因子超过最大负载因子(默认值为 1.0),该容器就会适当增加桶的数量(通常是翻一倍),并自动执行 rehash() 成员方法,重新调整各个键值对的存储位置(此过程又称“重哈希”),此过程很可能导致之前创建的迭代器失效。

所谓迭代器失效,针对的是那些用于表示容器内某个范围的迭代器,由于重哈希会重新调整每个键值对的存储位置,所以容器重哈希之后,之前表示特定范围的迭代器很可能无法再正确表示该范围。但是,重哈希并不会影响那些指向单个键值对元素的迭代器。

例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#include <iostream>
#include <unordered_map>
using namespace std;
int main(){
//创建 umap 容器
unordered_map<int, int> umap;
//向 umap 容器添加 50 个键值对
for (int i = 1; i <= 50; i++) {
umap.emplace(i, i);
}
//获取键为 49 的键值对所在的范围
auto pair = umap.equal_range(49);
//输出 pair 范围内的每个键值对的键的值
for (auto iter = pair.first; iter != pair.second; ++iter) {
cout << iter->first <<" ";
}
cout << endl;
//手动调整最大负载因子数
umap.max_load_factor(3.0);
//手动调用 rehash() 函数重哈希
umap.rehash(10);
//重哈希之后,pair 的范围可能会发生变化
for (auto iter = pair.first; iter != pair.second; ++iter) {
cout << iter->first << " ";
}
return 0;
}
//输出结果
49
49 17

通过输出结果不难发现,之前用于表示键为 49 的键值对所在范围的 2 个迭代器,重哈希之后表示的范围发生了改变。

用于遍历整个容器的 begin()/end() 和 cbegin()/cend() 迭代器对,重哈希只会影响遍历容器内键值对的顺序,整个遍历的操作仍然可以顺利完成。

1.4 unordered_map获取元素的4种方法

1) unordered_map 容器类模板中,实现了对 [ ] 运算符的重载,使得我们可以像“利用下标访问普通数组中元素”那样,通过目标键值对的键获取到该键对应的值。

例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建 umap 容器
unordered_map<string, string> umap{
{"Python教程","https://lichengloong.com/1"},
{"Java教程","https://lichengloong.com/2"},
{"Linux教程","https://lichengloong.com/3"} };
//获取 "Java教程" 对应的值
string str = umap["Java教程"];
cout << str << endl;
return 0;
}
//输出结果
https://lichengloong.com/2

要注意的是,如果当前容器中并没有存储以 [ ] 运算符内指定的元素作为键的键值对,则此时 [ ] 运算符的功能将转变为:向当前容器中添加以目标元素为键的键值对。举个例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建空 umap 容器
unordered_map<string, string> umap;
//[] 运算符在 = 右侧
string str = umap["STL教程"];
//[] 运算符在 = 左侧
umap["C教程"] = "https://lichengloong.com/";

for (auto iter = umap.begin(); iter != umap.end(); ++iter) {
cout << iter->first << " " << iter->second << endl;
}
return 0;
}
//输出结果
C教程 https://lichengloong.com/
STL教程

可以看见,当使用 [ ] 运算符向 unordered_map 容器中添加键值对时,分为 2 种情况:

1.当 [ ] 运算符位于赋值号(=)右侧时,则新添加键值对的键为 [ ] 运算符内的元素,其值为键值对要求的值类型的默认值(string 类型默认值为空字符串);
2.当 [ ] 运算符位于赋值号(=)左侧时,则新添加键值对的键为 [ ] 运算符内的元素,其值为赋值号右侧的元素。

2) unordered_map 类模板中,还提供有 at() 成员方法,和使用 [ ] 运算符一样,at() 成员方法也需要根据指定的键,才能从容器中找到该键对应的值;

不同之处在于,如果在当前容器中查找失败,该方法不会向容器中添加新的键值对,而是直接抛出out_of_range异常。

例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建 umap 容器
unordered_map<string, string> umap{
{"Python教程","https://lichengloong.com/1"},
{"Java教程","https://lichengloong.com/2"},
{"Linux教程","https://lichengloong.com/3"} };
//获取指定键对应的值
string str = umap.at("Python教程");
cout << str << endl;
//执行此语句会抛出 out_of_range 异常
//cout << umap.at("GO教程");
return 0;
}
//输出结果
https://lichengloong.com/1

此程序中,第 12 行代码用于获取 umap 容器中键为“Python教程”对应的值,由于 umap 容器确实有符合条件的键值对,因此可以成功执行;而第 17 行代码,由于当前 umap 容器没有存储以“Go教程”为键的键值对,因此执行此语句会抛出 out_of_range 异常。

3) [ ] 运算符和 at() 成员方法基本能满足大多数场景的需要。除此之外,还可以借助 unordered_map 模板中提供的 find() 成员方法。

和前面方法不同的是,通过 find() 方法得到的是一个正向迭代器,该迭代器的指向分以下 2 种情况:

1.当 find() 方法成功找到以指定元素作为键的键值对时,其返回的迭代器就指向该键值对;
2.当 find() 方法查找失败时,其返回的迭代器和 end() 方法返回的迭代器一样,指向容器中最后一个键值对之后的位置。

例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建 umap 容器
unordered_map<string, string> umap{
{"Python教程","https://lichengloong.com/"},
{"Java教程","https://lichengloong.com/"},
{"Linux教程","https://lichengloong.com/"} };
//查找成功
unordered_map<string, string>::iterator iter = umap.find("Python教程");
cout << iter->first << " " << iter->second << endl;
//查找失败
unordered_map<string, string>::iterator iter2 = umap.find("GO教程");
if (iter2 == umap.end()) {
cout << "当前容器中没有以\"GO教程\"为键的键值对";
}
return 0;
}
//输出结果
Python教程 https://lichengloong.com/
当前容器中没有以"GO教程"为键的键值对

4) 除了 find() 成员方法之外,甚至可以借助 begin()/end() 或者 cbegin()/cend(),通过遍历整个容器中的键值对来找到目标键值对。

例子:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
#include <iostream>
#include <string>
#include <unordered_map>
using namespace std;
int main(){
//创建 umap 容器
unordered_map<string, string> umap{
{"Python教程","https://lichengloong.com/1"},
{"Java教程","https://lichengloong.com/2"},
{"Linux教程","https://lichengloong.com/3"} };
//遍历整个容器中存储的键值对
for (auto iter = umap.begin(); iter != umap.end(); ++iter) {
//判断当前的键值对是否就是要找的
if (!iter->first.compare("Java教程")) {
cout << iter->second << endl;
break;
}
}
return 0;
}
//输出结果
https://lichengloong.com/2

前 2 种方法基本能满足多数场景的需要,建议首选 at() 成员方法!


本文作者: 墨水记忆
本文链接: https://tothefor.com/DragonOne/1770380764.html
版权声明: 本博客所有文章除特别声明外,均采用 CC BY-SA 4.0 协议 ,转载请注明出处!